02.12.2021NANO COLLOQUIA S3 Avinash Vikatakavi
Date and Time: December 2, 2021 - 15.00 ONLINE
25.11.2021Producing electricity from heat losses: engineered in Pisa the first device capable of achieving it in a controlled manner
It is now possible to create a new generation of “smart” thermoelectric systems to generate clea...
23.11.2021il progetto RIMMEL @ MECSPE - Bologna 2021
Si svolgerà martedì 23 novembre, dalle 16.45 alle 17.45 (Sala Concerto c/o Centro Servizi – Bolo...
19.11.2021Graphene as a solid lubricant becomes super-slippery
Cnr Nano researchers in collaboration with Sussex University and Rice University studied the frictio...
17.11.2021International Workshop on Advanced Materials-to-Device Solutions for Synaptic Electronics
CNR Nano and ICN2 organized the
03.11.2021The RIMMEL Project @ l'Europa è qui 2021 – VOTE THE VIDEO ONLINE
The RIMMEL project enters the “Europe is here ...
11.10.2021Quantum computers become an experimental physics laboratory
A quantum computer is a machine designed to do calculations. Now a group of physicists from CnrNano,...
05.10.20212021 Nobel Prize for the discoveries on TRPV1 and PIEZO receptors
The seminal discoveries by this year’s Nobel Laureates have explained how heat, cold and touch can...
home
- 28.04.2021 - FIM-S3 SEMINAR - Prof Ray LaPierreDate and Time: Wednesday April 28th, 16:00 Link (Google Meet): https://meet.google.com/yud-upbp-mno Speaker: Prof Ray LaPierre - Mc Master University (Canada) Title: Semiconductor nanowires for betavoltaics, photovoltaics and energy harvesting Abstract:III-V compound semiconductor nanowires (NWs) are being developed for the next generation of optoelectronic devices such as photodetectors, photovoltaics, betavoltaics and thermoelectrics. The self-assisted vapor-liquid-solid method is now a well-established technique for the growth of III-V NWs on silicon substrates. In this method, an array of holes in a SiO2 film is used for metal droplet formation, which seeds the growth of vertically oriented NWs within a periodic array. The free lateral surfaces of NWs allow elastic relaxation of lattice misfit strain without the generation of dislocations, permitting unique heterostructures and the direct integration of III-V materials on inexpensive silicon substrates. Furthermore, NWs permit high optical absorption due to an optical antenna effect. The optical absorption in NW arrays can exceed that due to a thin film of equivalent thickness, enabling high efficiency NW-based photovoltaic devices. Optical resonances that depend on the NW diameter allow multispectral absorption for infrared camera applications. Embedding a radioisotope in the space between nanowires enables betavoltaic devices, a type of nuclear nano-battery. Some of the challenges associated with NW materials and devices will be illustrated. Host: Marco Gibertini (FIM, UNIMORE) and Claudia Cardoso (S3, CNR-NANO) The flyer can be found here People interested in these seminars might want to subscribe to the dedicated Google Calendar