02.12.2021NANO COLLOQUIA S3 Avinash Vikatakavi
Date and Time: December 2, 2021 - 15.00 ONLINE
25.11.2021Producing electricity from heat losses: engineered in Pisa the first device capable of achieving it in a controlled manner
It is now possible to create a new generation of “smart” thermoelectric systems to generate clea...
23.11.2021il progetto RIMMEL @ MECSPE - Bologna 2021
Si svolgerà martedì 23 novembre, dalle 16.45 alle 17.45 (Sala Concerto c/o Centro Servizi – Bolo...
19.11.2021Graphene as a solid lubricant becomes super-slippery
Cnr Nano researchers in collaboration with Sussex University and Rice University studied the frictio...
17.11.2021International Workshop on Advanced Materials-to-Device Solutions for Synaptic Electronics
CNR Nano and ICN2 organized the
03.11.2021The RIMMEL Project @ l'Europa è qui 2021 – VOTE THE VIDEO ONLINE
The RIMMEL project enters the “Europe is here ...
11.10.2021Quantum computers become an experimental physics laboratory
A quantum computer is a machine designed to do calculations. Now a group of physicists from CnrNano,...
05.10.20212021 Nobel Prize for the discoveries on TRPV1 and PIEZO receptors
The seminal discoveries by this year’s Nobel Laureates have explained how heat, cold and touch can...
home
- 14.10.2020 - MaX Webinar on FLEUR codeThe sixth Webinar of the series presenting the most recent developments of the MaX flagship codes entitled "All-electron DFT using the FLEUR code" will take place on October 14, 2020 at 11:00 CEST, featuring the FLEUR code. Within the zoo of different density functional theory methods frequently employed, the full-potential linearized augmented planewave (FLAPW) method is commonly considered as the approach able to provide the most precise results. Among the flagship codes developed within the MaX centre of excellence, the open-source code FLEUR code, implementing this method, can provide reference results and can be utilized to study details of the electronic, magnetic, and atomistic structure of complex materials. The code is able to treat bulk and film systems with all elements of the periodic table. Recently, major advances in the scalability, performance and applicability of the code have been achieved and made available in the MaX releases of the code. The webinar will focus on the basic features and fundamentals of the FLEUR code. We will include an overview of the different types of simulations possible with the code, including its interfaces to other methods. The use of FLEUR on modern HPC systems including Tier-0 PRACE systems will also be covered in our presentation. Additionally, we aim at providing hints and instructions useful for deploying FLEUR on different systems, to overcome typical challenges and to identify the requirements for the usage of the code. Finally, we will point at possible further sources of information, documentation and support processes and outline our future plans. Registration is now open! More info available on MaX website If you missed the previous MaX webinar series on the MaX flagship codes, click here.