02.12.2021NANO COLLOQUIA S3 Avinash Vikatakavi
Date and Time: December 2, 2021 - 15.00 ONLINE
25.11.2021Producing electricity from heat losses: engineered in Pisa the first device capable of achieving it in a controlled manner
It is now possible to create a new generation of “smart” thermoelectric systems to generate clea...
23.11.2021il progetto RIMMEL @ MECSPE - Bologna 2021
Si svolgerà martedì 23 novembre, dalle 16.45 alle 17.45 (Sala Concerto c/o Centro Servizi – Bolo...
19.11.2021Graphene as a solid lubricant becomes super-slippery
Cnr Nano researchers in collaboration with Sussex University and Rice University studied the frictio...
17.11.2021International Workshop on Advanced Materials-to-Device Solutions for Synaptic Electronics
CNR Nano and ICN2 organized the
03.11.2021The RIMMEL Project @ l'Europa è qui 2021 – VOTE THE VIDEO ONLINE
The RIMMEL project enters the “Europe is here ...
11.10.2021Quantum computers become an experimental physics laboratory
A quantum computer is a machine designed to do calculations. Now a group of physicists from CnrNano,...
05.10.20212021 Nobel Prize for the discoveries on TRPV1 and PIEZO receptors
The seminal discoveries by this year’s Nobel Laureates have explained how heat, cold and touch can...
home
Foto: Prof. Liliana Arrachea [courtesy Universidad de Buenos Aires, Argentina]
- 03.11.2017 - Nest Seminar Liliana ArracheaNEST Seminar Friday 3 November 2017 - 11:00 Venue: NEST seminar room Speaker: Liliana Arrachea Affiliation: Departamento de Fisica, Universidad de Buenos Aires, Argentina Title: “Fractional spin and Josephson effect in time-reversal-invariant topological superconductors” Abstract: Time reversal invariant topological superconducting (TRITOPS) wires are known to host a fractional spin hbar/4 at their ends. We investigate how this fractional spin affects the Josephson current in a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model which can be tuned between a topological and a nontopological phase. We compute the equilibrium Josephson current of the full model by continuous-time Monte Carlo simulations and interpret the results within an effective low-energy theory. We show that in the topological phase, the 0-to-pi transition is quenched via formation of a spin singlet from the quantum dot spin and the fractional spins associated with the two adjacent topological superconductors.
Info fabio.taddei@nano.cnr.it
Link https://www.pks.mpg.de/~arrachea/